SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

<table>
<thead>
<tr>
<th>Product name</th>
<th>Sandvik Long-life Axle Oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synonyms</td>
<td>Product Code: Sandvik OA85W140</td>
</tr>
<tr>
<td>Other means of identification</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses: Hydraulic oil.

Details of the supplier of the safety data sheet

<table>
<thead>
<tr>
<th>Registered company name</th>
<th>Sandvik Mining Australia Pty Ltd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>136 Daws Road Melrose Park SA 5039 Australia</td>
</tr>
<tr>
<td>Telephone</td>
<td>+61 8 8276 7655</td>
</tr>
<tr>
<td>Fax</td>
<td>+61 8 8276 8509</td>
</tr>
<tr>
<td>Email</td>
<td>sds.smrt@sandvik.com</td>
</tr>
</tbody>
</table>

Emergency telephone number

<table>
<thead>
<tr>
<th>Association / Organisation</th>
<th>UK National Chemical Emergency Centre (NCEC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency telephone numbers</td>
<td>+44 1865 407 333 (24 hours, 7 days)</td>
</tr>
<tr>
<td>Other emergency telephone numbers</td>
<td>+61 2 8014 4558 (Australia)</td>
</tr>
</tbody>
</table>

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

| NON-HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. |

<table>
<thead>
<tr>
<th>CHEMWATCH HAZARD RATINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Flammability</td>
</tr>
<tr>
<td>Toxicity</td>
</tr>
<tr>
<td>Body Contact</td>
</tr>
<tr>
<td>Reactivity</td>
</tr>
<tr>
<td>Chronic</td>
</tr>
<tr>
<td>Poisons Schedule</td>
</tr>
</tbody>
</table>

0 = Minimum 1 = Low 2 = Moderate 3 = High 4 = Extreme
Classification

Acute Aquatic Hazard Category 3, Chronic Aquatic Hazard Category 3

Legend:

Label elements

Hazard pictogram(s)	Not Applicable
SIGNAL WORD | NOT APPLICABLE

Hazard statement(s)

H412 | Harmful to aquatic life with long lasting effects.

Precautionary statement(s) Prevention

P273 | Avoid release to the environment.

Precautionary statement(s) Response

Not Applicable

Precautionary statement(s) Storage

Not Applicable

Precautionary statement(s) Disposal

P501 | Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

<table>
<thead>
<tr>
<th>CAS No</th>
<th>%[weight]</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>68955-53-3</td>
<td>0.1-0.25</td>
<td>(C12-14)tert-alkylamines</td>
</tr>
<tr>
<td>112-90-3</td>
<td>0.1-0.25</td>
<td>oleyl amine</td>
</tr>
</tbody>
</table>

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact

If this product comes in contact with the eyes:
- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Seek medical attention without delay; if pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Skin Contact

If skin or hair contact occurs:
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

Inhalation

- If fumes, aerosols or combustion products are inhaled remove from contaminated area.
- Other measures are usually unnecessary.

Ingestion

- **If swallowed do NOT induce vomiting.**
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Seek medical advice.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

SECTION 5 FIREFIGHTING MEASURES
Extinguishing media

- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog - Large fires only.

Do not use a water jet to fight fire.

Special hazards arising from the substrate or mixture

<table>
<thead>
<tr>
<th>Fire Incompatibility</th>
</tr>
</thead>
</table>

- Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result.

Advice for firefighters

<table>
<thead>
<tr>
<th>Fire Fighting</th>
</tr>
</thead>
</table>

- Alert Fire Brigade and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- Avoid spraying water onto liquid pools.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.

<table>
<thead>
<tr>
<th>Fire/Explosion Hazard</th>
</tr>
</thead>
</table>

- Combustible.
- Slight fire hazard when exposed to heat or flame.
- Heating may cause expansion or decomposition leading to violent rupture of containers.
- On combustion, may emit irritating/toxic fumes.
- May emit acrid smoke.
- Mists containing combustible materials may be explosive.

Combustion products include:
- carbon monoxide (CO)
- carbon dioxide (CO2)
- other pyrolysis products typical of burning organic material.

HAZCHEM

Not Applicable

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures
See section 8

Environmental precautions
See section 12

Methods and material for containment and cleaning up

<table>
<thead>
<tr>
<th>Minor Spills</th>
</tr>
</thead>
</table>

- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid breathing fumes and contact with skin and eyes.
- Control personal contact with the substance, by using protective equipment.
- Contain and absorb spill with sand, earth, inert material or vermiculite.
- Wipe up.
- Place in a suitable, labelled container for waste disposal.

<table>
<thead>
<tr>
<th>Major Spills</th>
</tr>
</thead>
</table>

Moderate hazard.
- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- No smoking, naked lights or ignition sources.
- Increase ventilation.
- Stop leak if safe to do so.
- Contain spill with sand, earth or vermiculite.
- Collect recoverable product into labelled containers for recycling.
- Absorb remaining product with sand, earth or vermiculite.
- Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.
Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.

Other information

- Store in original containers.
- Keep containers securely sealed.
- No smoking, naked lights or ignition sources.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

- Metal can or drum
- Packaging as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

| OCCUPATIONAL EXPOSURE LIMITS (OEL) |
| INGREDIENT DATA |
| Not Available |

| EMERGENCY LIMITS |

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Material name</th>
<th>TEEL-1</th>
<th>TEEL-2</th>
<th>TEEL-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandvik Long-life Axle Oil</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Original IDLH</th>
<th>Revised IDLH</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C12-14)tert-alkylamines</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>oleyl amine</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Exposure controls

- Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

- Process controls which involve changing the way a job activity or process is done to reduce the risk.
- Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

General exhaust is adequate under normal operating conditions. If risk of overexposure exists, wear SAA approved...
respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

<table>
<thead>
<tr>
<th>Type of Contaminant:</th>
<th>Air Speed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>solvent, vapours, degreasing etc., evaporating from tank (in still air)</td>
<td>0.25-0.5 m/s (50-100 f/min)</td>
</tr>
<tr>
<td>aerosols, fumes from pouring operations, intermittent container filling, low speed conveyor transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)</td>
<td>0.5-1 m/s (100-200 f/min.)</td>
</tr>
<tr>
<td>direct spray, spray painting in shallow booths, drum filling, conveyor loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)</td>
<td>1-2.5 m/s (200-500 f/min)</td>
</tr>
<tr>
<td>grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).</td>
<td>2.5-10 m/s (500-2000 f/min)</td>
</tr>
</tbody>
</table>

Within each range the appropriate value depends on:

<table>
<thead>
<tr>
<th>Lower end of the range</th>
<th>Upper end of the range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Room air currents minimal or favourable to capture</td>
<td>1: Disturbing room air currents</td>
</tr>
<tr>
<td>2: Contaminants of low toxicity or of nuisance value only</td>
<td>2: Contaminants of high toxicity</td>
</tr>
<tr>
<td>3: Intermittent, low production.</td>
<td>3: High production, heavy use</td>
</tr>
<tr>
<td>4: Large hood or large air mass in motion</td>
<td>4: Small hood - local control only</td>
</tr>
</tbody>
</table>

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection
- Safety glasses with side shields
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Eye and face protection
- Safety glasses with side shields
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection
- See Hand protection below

Hands/feet protection
- Wear general protective gloves, eg. light weight rubber gloves.
- The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.
- The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.
- Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturizer is recommended.
- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:
 - frequency and duration of contact,
 - chemical resistance of glove material,
 - glove thickness and dexterity.
- Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).
 - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
 - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
 - Some glove polymer types are less affected by movement and this should be taken into account when
considering gloves for long-term use.

- Contaminated gloves should be replaced.

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers’ technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk, i.e. where there is abrasion or puncture potential.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

BODY PROTECTION

See Other protection below

OTHERWISE:

- Overallis.
- Barrier cream.
- Eyewash unit.

Thermal hazards

Not Available

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

<table>
<thead>
<tr>
<th>Appearance</th>
<th>Brown liquid with a characteristic odour; does not mix with water.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical state</td>
<td>Liquid</td>
</tr>
<tr>
<td>Odour</td>
<td>Not Available</td>
</tr>
<tr>
<td>Odour threshold</td>
<td>Not Available</td>
</tr>
<tr>
<td>pH (as supplied)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Melting point / freezing point (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Initial boiling point and boiling range (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Flash point (°C)</td>
<td>230</td>
</tr>
<tr>
<td>Evaporation rate</td>
<td>Not Available</td>
</tr>
<tr>
<td>Flammability</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Vapour pressure (kPa)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Solubility in water (g/L)</td>
<td>Immiscible</td>
</tr>
<tr>
<td>Vapour density (Air = 1)</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

SECTION 10 STABILITY AND REACTIVITY

Reactivity

See section 7

Chemical stability

Product is considered stable and hazardous polymerisation will not occur.

Possibility of hazardous reactions

See section 7

Continued...
SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

<table>
<thead>
<tr>
<th>Route</th>
<th>Material Specific</th>
<th>Toxicity</th>
<th>Irritation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhaled</td>
<td>The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ingestion</td>
<td>Ingestion may result in nausea, abdominal irritation, pain and vomiting.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin Contact</td>
<td>The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eye</td>
<td>The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic</td>
<td>Long-term exposure to the product is not thought to produce chronic effects adverse to the health (as classified by EC Directives using animal models); nevertheless exposure by all routes should be minimised as a matter of course.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sandvik Long-life Axle Oil

<table>
<thead>
<tr>
<th>Route</th>
<th>Toxicity (mg/kg)</th>
<th>Irritation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhalation</td>
<td>260.2 (vapour)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Oral</td>
<td>153.061</td>
<td></td>
</tr>
</tbody>
</table>

(C12-14)tert-alkylamines

<table>
<thead>
<tr>
<th>Route</th>
<th>Toxicity (mg/kg)</th>
<th>Irritation</th>
</tr>
</thead>
</table>
| dermal | 251 | Eye (rabbit): SEVERE *
| Oral | >=200<=500 | Skin (rabbit): Corrosive under |

Oleyl amine

<table>
<thead>
<tr>
<th>Route</th>
<th>Toxicity (mg/kg)</th>
<th>Irritation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral</td>
<td>1200</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Legend:

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity
2. Value obtained from manufacturer's SDS.

Toxicity

- **Inhalation (rat)**: LD50: 260.2 mg/l (vapour)
- **Oral (None)**: LD50: 153.061 mg/kg

Irritation

- Not Available

Oleyl Amine

Signs of nervous system effects were seen by the oral, dermal and inhalation routes for commercial (C12-16)tert-alkylamines CAS 68955-54-4

Reprotoxicity: In a Dietary One Generation Reproduction Study with rats, no parental or reproductive effects were observed at doses up to and including 250 ppm (approximately 21.0 mg/kg [female] and 19.1 mg/kg [male]). At higher doses, both parental and reproductive effects were seen. These effects occurred at dose levels which were significantly higher than the recommended workplace exposure limit. This material does not present a reproductive risk. Genotoxicity (in vivo): in vivo micronucleus (mouse) - negative Mutagenicity Ames mutagenicity: Non-mutagenic * * Rohm and Haas

Signs of nervous system effects were seen by the oral, dermal and inhalation routes for commercial (C12-14)tert-alkylamines

FND ether amines and FND amines are very similar in structure (length of chain or degree of saturation), function and toxicity. Acute exposure to FND ether amines by oral, dermal and inhalation may produce moderate to slight toxicity but repeated skin contact can be highly irritating. However, exposure did not produce any organ-specific toxicity, genetic, reproductive or developmental defect same as in FND amines. Overexposure to most of these materials may cause adverse health effects. Many amine-based compounds can cause release of histamines, which, in turn, can trigger allergic and other physiological effects, including constriction of the bronchi or asthma and inflammation of the cavity of the nose. Whole-body symptoms include headache, nausea, faintness, anxiety, a decrease in blood pressure, rapid heartbeat, itching, reddening of the skin, urticaria (hives) and swelling of the face, which are usually transient. There are generally four routes of possible or potential exposure: inhalation, skin contact, eye contact, and swallowing.

Inhalation: Inhalating vapours may result in moderate to severe irritation of the tissues of the nose and throat and can irritate the lungs. Higher concentrations of certain amines can produce severe respiratory irritation, characterized by discharge from the nose, coughing, difficulty in breathing and chest pain. Chronic exposure via inhalation may cause headache, nausea, vomiting, drowsiness, sore throat, inflammation of the bronchi and lungs, and possible lung damage. Repeated and/or prolonged exposure to some amines may result in liver disorders, jaundice and liver enlargement. Some amines have been shown to cause kidney, blood and central nervous system disorders in animal studies. While most polyurethane amine catalysts are not sensitizers, some certain individuals may also become sensitized to amines and my experience distress while breathing, including asthma-like attacks, whenever they are subsequently exposed to even very small amounts of vapours. Once sensitized, these individuals must avoid any further exposure to amines. Chronic overexposure may lead to permanent lung injury, including reduction in lung function, breathlessness, chronic inflammation of the bronchi, and immunologic lung disease. Products with higher vapour pressures may reach higher concentrations in the air, and this increases the likelihood of worker exposure.
Inhalation hazards are increased when exposure to amine catalysts occurs in situations that produce aerosols, mists or heated vapours. Such situations include leaks in fitting or transfer lines. Medical conditions generally aggravated by inhalation exposure include asthma, bronchitis and emphysema.

Skin contact: Skin contact with amine catalysts poses a number of concerns. Direct skin contact can cause moderate to severe irritation and injury, from simple redness and swelling to painful blistering, ulceration, and chemical burns. Repeated or prolonged exposure may also result in severe cumulative skin inflammation. Skin contact with some amines may result in allergic sensitization. Sensitised persons should avoid all contact with amine catalysts. Whole-body effects resulting from the absorption of the amines though skin exposure may include headaches, nausea, faintness, anxiety, decrease in blood pressure, reddening of the skin, hives, and facial swelling. These symptoms may be related to the pharmacological action of the amines, and they are usually temporary.

Eye contact: Amines are alkaline and their vapours are irritating to the eyes, even at low concentrations. Direct contact with liquid amine may cause severe irritation and tissue injury, and the “burning” may lead to blindness. Contact with solid products may result in mechanical irritation, pain and corneal injury.

Exposed persons may experience excessive tearing, burning, inflammation of the conjunctiva, and swelling of the cornea, which manifests as a blurred or foggy vision with a blue tint, and sometimes a halo phenomenon around lights. These symptoms are temporary and usually disappear when exposure ends. Some people may experience this effect even when exposed to concentrations that do not cause respiratory irritation. Ingestion: Amines can cause severe irritation, ulcers and burns of the mouth, throat, gullet and gastrointestinal tract. Material aspirated due to vomiting can damage the bronchial tubes and the lungs. Affected people may also experience pain in the chest or abdomen, nausea, bleeding of the throat and gastrointestinal tract, diarrhea, dizziness, drowsiness, thirst, collapse of circulation, coma and even death. Substance has been investigated as a reproductive effector in rodents.

(C12-14)TERT-ALKYLAMINES & OLEYL AMINE

The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive Airways Dysfunction Syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.

The material may produce respiratory tract irritation, and result in damage to the lung including reduced lung function.

The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

<table>
<thead>
<tr>
<th>Substance</th>
<th>ENDPOINT</th>
<th>TEST DURATION (HR)</th>
<th>SPECIES</th>
<th>VALUE</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandvik Long-life Axle Oil</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>(C12-14)tert-alkylamines</td>
<td>NOEC</td>
<td>2304</td>
<td>Fish</td>
<td>0.078mg/L</td>
<td>2</td>
</tr>
</tbody>
</table>

Legend:
- ✗ – Data available but does not fill the criteria for classification
- ✔ – Data available to make classification
- ✸ – Data Not Available to make classification
LC50
- **Species:** Fish
- **Value:** 0.06mg/L
- **Source:** 2

EC50
- **Species:** Crustacea
- **Value:** <1mg/L
- **Source:** 2

Legend:
- Extracted from 1. IUCLID Toxicity Data
- 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity
- 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated)
- 4. US EPA, Ecotox database - Aquatic Toxicity Data
- 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data
- 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

DO NOT discharge into sewer or waterways.

Persistence and degradability

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>oleyl amine</td>
<td>LOW</td>
<td>LOW</td>
</tr>
</tbody>
</table>

Bioaccumulative potential

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Bioaccumulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>oleyl amine</td>
<td>LOW (LogKOW = 7.4952)</td>
</tr>
</tbody>
</table>

Mobility in soil

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>oleyl amine</td>
<td>LOW (KOC = 319800)</td>
</tr>
</tbody>
</table>

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

- **Product / Packaging disposal:****
 - **DO NOT** allow wash water from cleaning or process equipment to enter drains.
 - It may be necessary to collect all wash water for treatment before disposal.
 - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
 - Where in doubt contact the responsible authority.
 - Recycle wherever possible or consult manufacturer for recycling options.
 - Consult State Land Waste Management Authority for disposal.
 - Bury residue in an authorised landfill.
 - Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 TRANSPORT INFORMATION

Labels Required

- **Marine Pollutant:** NO
- **HAZCHEM:** Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

- **(C12-14)TERT-ALKYLAMINES(68955-53-3)** IS FOUND ON THE FOLLOWING REGULATORY LISTS
- Australia Inventory of Chemical Substances (AICS)

- **OLEYL AMINE(112-90-3)** IS FOUND ON THE FOLLOWING REGULATORY LISTS
Australia Inventory of Chemical Substances (AICS)

<table>
<thead>
<tr>
<th>National Inventory</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia - AICS</td>
<td>Y</td>
</tr>
<tr>
<td>Canada - DSL</td>
<td>Y</td>
</tr>
<tr>
<td>Canada - NDSL</td>
<td>N ((C12-14)tert-alkylamines; oleyl amine)</td>
</tr>
<tr>
<td>China - IECSC</td>
<td>Y</td>
</tr>
<tr>
<td>Europe - EINEC / ELINCS / NLP</td>
<td>Y</td>
</tr>
<tr>
<td>Japan - ENCS</td>
<td>N ((C12-14)tert-alkylamines)</td>
</tr>
<tr>
<td>Korea - KECI</td>
<td>Y</td>
</tr>
<tr>
<td>New Zealand - NZIoC</td>
<td>Y</td>
</tr>
<tr>
<td>Philippines - PICCS</td>
<td>Y</td>
</tr>
<tr>
<td>USA - TSCA</td>
<td>Y</td>
</tr>
</tbody>
</table>

Legend:

- Y = All ingredients are on the inventory
- N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing (see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Other information

Ingredients with multiple cas numbers

<table>
<thead>
<tr>
<th>Name</th>
<th>CAS No</th>
</tr>
</thead>
<tbody>
<tr>
<td>oleyl amine</td>
<td>112-90-3, 1213789-63-9</td>
</tr>
</tbody>
</table>

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

- **PC—TWA:** Permissible Concentration—Time Weighted Average
- **PC—STEL:** Permissible Concentration—Short Term Exposure Limit
- **IARC:** International Agency for Research on Cancer
- **ACGIH:** American Conference of Governmental Industrial Hygienists
- **STEL:** Short Term Exposure Limit
- **TEEL:** Temporary Emergency Exposure Limit
- **IDLH:** Immediately Dangerous to Life or Health Concentrations
- **OSF:** Odour Safety Factor
- **NOAEL:** No Observed Adverse Effect Level
- **LOAEL:** Lowest Observed Adverse Effect Level
- **TLV:** Threshold Limit Value
- **LOD:** Limit Of Detection
- **OTV:** Odour Threshold Value
- **BOF:** BioConcentration Factors
- **BEI:** Biological Exposure Index

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.